Stat-Ease 360 - 实验设计软件
使用Stat-Ease 360对您的产品和流程进行突破性改进。这个“Pro”版本通过高等用户的指令功能增强了Design-Expert软件。利用使Design-Expert成为同类理想实验设计的相同简化工作流程,运行计算机实验或想要实施Python脚本的技术人员现在可以利用全部新功能。空间填充设计、高斯过程模型、Python脚本和新的逻辑分类节点使Stat-Ease 360成为更强的Design-Expert版本!
2022版增加了自定义图表,多响应分析摘要、将块分析为随机效应的能力,以及用于快速传输数据的简便导入/导出Excel文件。
Stat-Ease 360使应用强的多因素测试工具变得很简便。
Python集成
创建与Stat-Ease 360交互的Python脚本。利用整个Python生态系统来可视化、分析和利用您的数据。
空间填充设计:拉丁超立方体和理想距离
这些设计具有很多理想的特性,使它们成为计算机实验的理想选择。
Excel导入/导出
应大众需求添加。用户现在可以直接在 Stat-Ease 360 和 Microsoft Excel 之间导入和导出数据和设计文件,以实现无缝转换。
22.0 中的新功能:分析摘要
新的Analysis Summary使用更多模型拟合统计信息扩展了以前的系数表。轻松查看所有响应的p值、R方、模型方程等。
22.0 中的新功能:自定义图表
图形列节点已升级为自定义图形。您现在可以绘制预测值和残差等分析数据,还可以按大小和符号区分点。
现在可用:托管网络许可
一个新的许可选项可用于在statease.com上托管网络许可。这使您可以在多个设备上运行该软件,而无需本地许可服务器,从而减低DIY软件部署和管理的成本。
更新:
- Excel导入/导出(只限Stat-Ease 360)
- 您现在可以直接从Excel文件导入设计数据。您还可以将设计导出到Excel文件。
随机块(只限Stat-Ease 360)
使用块可以使用新的分析选项,将它们视为随机而不是固定块分析。当模型预测将在实验中不存在的块的新级别进行时,随机块更合适。例如,如果您按天阻止。
【英文介绍】
Design of Experiments (DOE) Made Powerful
Make breakthrough improvements to your product and process with Stat-Ease 360. This "pro" version augments Design-Expert software with commanding features for advanced users. Capitalizing on the same streamlined workflow that makes Design-Expert best-in-class for design of experiments, technical professionals who are running computer experiments or want to implement Python scripting can now take advantage of all new functionality. Space-filling designs, Gaussian process models, Python scripting, and a new logistic classification node make Stat-Ease 360 a more powerful version of Design-Expert!
The 2022 Release adds Custom Graphs, a multi-response Analysis Summary, the ability to analyze blocks as random effects, and a simple Import/Export of Excel files for quick transfer of data.
Stat-Ease 360 makes it incredibly easy to apply powerful multifactor testing tools.
Python Integration
Create Python scripts that interact with Stat-Ease 360. Make use of the entire Python ecosystem to visualize, analyze, and make the most of your data.
Gaussian Process Models
Analyze deterministic responses such as those from computer experiments with Gaussian process models.
Space-Filling Designs: Latin Hypercube & Optimal Distance
These designs have many desirable properties that make them ideal for computer experiments.
- 2024-11-19
- 2024-11-12
- 2024-11-08
- 2024-11-07
- 2024-11-05
- 2024-10-30
- 2024-11-15
- 2024-11-14
- 2024-11-01
- 2024-10-18
- 2024-10-16
- 2024-10-14