VisuMap - 可视化数据分析软件
VisuMap是针对探索性分析问题的面向可视化的解决方案。VisuMap体现了多项数学和编程技术,提供:
-
RPM(Relational Perspective Map)、PCA(Principal Component Analysis)、MDS(Multidimensional Scaling)等映射和降维算法的集合;
-
用于高维数据的高等聚类算法,如自组织映射、亲和传播、 k-均值聚类;
-
动态链接的数据视图;和
-
用于高等应用程序的脚本和库接口。
VisuMap帮助人们理解高维、复杂、大型或其他“困难”的数据集。它使研究人员、分析师和其他人员能够通过与数据的2D和3D地图进行交互来掌握趋势和模式。
通过集成新的数学技术来呈现相互关联的多维数据,VisuMap使用户能够运用他们视觉感知和直觉的力量。
这种对人类感知能力的利用,加上易用性,意味着VisuMap在传统数据挖掘工具失败的地方取得了成功。同时,开发人员和系统管理员会发现广泛的脚本和插件界面,鼓励他们自定义、集成和扩展VisuMap以满足用户的需求。
多维缩放(数据映射):
-
主成分分析(PCA)
-
多维尺度(Sammon 地图)
-
关系透视图(RPM)
-
曲线成分分析(CCA)
-
通过SMACOF算法的MDS
-
对应分析
-
随机领域嵌入(t-SNE)
-
线性判别分析(LDA)
-
亲和嵌入
-
数据库+
数据聚类:
-
自组织映射(Kohonen网)
-
K-均值聚类
-
公制抽样
-
凝聚聚类
-
亲和传播
-
自组织图
-
谱聚类
-
均值漂移聚类
-
集成聚类
-
k-Nearst Neighbor(k-NN) 聚类
数据可视化与探索:
-
13个内置指标:euclidean, mahalanobis, pearson correlation, speaman ranking, wedge- hedge,等
-
动态链接的数据视图:条形图/曲线图、频谱图、表格、树、Shepard图、地图集、仪表板、热图等
-
交互式参数探测
-
属性图分析
-
硬件加速3D动画
编程接口:
-
用于自动化的脚本接口
-
上下文相关的脚本编辑器
-
用于扩展的DotNet插件接口
-
导入/导出格式:ASCII、SQL-DB、JPEG、GIF、SVG等(10种图像格式)
数据建模/机器学习:
-
深度分类
-
深度剖析
应用
-
药剂学
-
生物信息学
-
财务分析
-
市场分析
-
电讯业
系统要求
Windows 7及更高版本
Microsoft .NET 4.8运行时
DirectX 12兼容显卡
【英文介绍】
VisuMap helps people understand high-dimensional, complex, large or otherwise 'difficult' datasets. It enables researchers, analysts and other professionals to grasp trends and patterns by interacting with 2D and 3D maps of their data.
By integrating the latest mathematical techniques for presenting multiple dimensions of data in relation to eath other, VisuMap enables users to apply the power of their visual perception and intuition.
This harnessing of human perceptual power, together with unprecedented ease of use, means that VisuMap has succeeded where conventional data mining tools have failed. At the same time, developers and system administrators will find extensive scripting and plug-in interfaces that encourage them to customize, integrate and extend VisuMap to suit their end-users' needs.
Multidimesnional Scaling (data mapping):
-
Principal Component Analysis (PCA)
-
Multidimensional Scaling (Sammon Map)
-
Relational Perspective Map (RPM)
-
Curvilinear Component Analysis (CCA)
-
MDS by SMACOF Algorithm
-
Correspondence Analysis
-
Stochastic Neighbor Embedding (t-SNE)
-
Linear Discreminate Analysis (LDA)
-
Affinity Embedding
-
DBSCAN+
Data Clustering:
-
Self-Organizing Map (Kohonen Net)
-
K-Mean Clustering
-
Metric Sampling
-
Agglomerative Clustering
-
Affinity Propagation
-
Self-Organzing Graph
-
Spectral Clustering
-
Mean-Shift Clustering
-
Ensemble Clustering
-
k-Nearst Neighbor (k-NN) Clustering
Data Visualization & Exploration:
-
13 built-in metrics: euclidean, mahalanobis, pearson correlation, speaman ranking, wedge- hedge, etc.
-
Dynamically linked data views: bar/curve charts, spectrum, table, tree, Shepard diagram, atlas, dashboard, heatmap, etc..
-
Interactive parameter probing
-
Attribute map analysis
-
Hardware accelerated 3D animation
Programming Interfaces:
-
Scripting interface for automation
-
Context sensitve scriptor editor
-
DotNet plug-in interface for extension
-
Import/Export formats: ASCII, SQL-DB,
-
JPEG, GIF, SVG etc.(10 image formats).
Data Modeling/Machine Learning:
-
Deep Classification
-
Deep Profiling
Applications
-
Pharmaceutics
-
Bioinformatics
-
Financial analysis
-
Market analysis
-
Telecommunication industry
- 2024-12-03
- 2024-11-27
- 2024-11-19
- 2024-11-12
- 2024-11-08
- 2024-11-07
- 2024-11-25
- 2024-11-22
- 2024-11-15
- 2024-11-14
- 2024-11-01
- 2024-10-18